"SPIN-CHARGE EXCHANGE" IN A STABLE RADICAL-CARBANION, AND RELATED

INTERMOLECULAR ONE-ELECTRON TRANSFERS

Manuel Ballester* and Isabel Pascual Instituto de Química Orgánica Aplicada (C.S.I.C.) Jorge Girona Salgado, 18-26, 08034 Barcelona, Spain

ABSTRACT: An example of a rapid <u>spin</u>-charge exchange in a stable radical--carbanion, with independent radical and anion sites, is described. A related anionization of radicals with HO is also reported and interpreted.

By treatment with an alkaline hydroxide in DMSO, perchlorotriphenylmethyl radical (PTM') -a paradigm of an inert free radical¹ - is converted quantitatively into perchlorotriphenylmethylcarbanion (PTM⁻).^{2,3} We have recently found that this can most conveniently be accomplished with tetrabutylammonium hydroxide in THF. Such a puzzling one-electron transfer is tentatively explained through the formation of a transient p- π charge--transfer complex between hydroxide ion and radical PTM⁻ (HO-PTM⁻) (Figure 1) which is assisted by the powerful, cumulative electron-withdrawing effect of the numerous ring chlorines. Such a radical-anion complex would react somehow as a hydroxyl radical, leaving carbanion PTM⁻ behind.

Figure 1. Frontier-orbital diagram for CT complex HO-PTM

Inert free diradical perchloro- $\sigma, \sigma, \sigma', \sigma'$ -tetraphenylbi-p-tolyl- σ, σ' -diyl (PTET:) reacts also with Bu₄N⁺HO⁻, in THF, to give perchloro-- $\sigma, \sigma, \sigma', \sigma'$ -tetraphenylbi-p-tolyl- σ, σ' -diyl dianion (PTBT²⁻) in an excellent yield. A mixture of equimolecular amounts of diradical PTET: and PTBT²⁻ in THF, at room temperature, undergoes a rapid electron transfer yielding an equilibrium the major component of which is perchloro-- $\sigma, \sigma, \sigma', \sigma'$ -tetraphenylbi-p-tolyl- σ, σ' -diyl radical anion (PTBT⁻), along with those initial components. This equilibrium can also be attained by controlled oxidation of dicarbanion PTBT²⁻ with iodine.

In this connection its is pointed out that the biphenyls show an intense UV-Visible "biphenyl" (conjugation) band due to delocalization of their Π -electrons in both rings. Whenever a biphenyl possesses relatively bulky substituents in all their four central <u>ortho</u> positions then no vestige of the "biphenyl" band is observed, a fact due to complete steric inhibition of resonance or delocalization.⁴ This evanescence has also been described for numerous chlorine-substituted biphenyls and the locations of the remaining spectral maxima are practically coincident with those of closely-related benzene analogues.^{5,6} This phenomenum is due to the perpendicularity between the two benzene rings of the biphenyl system which is caused by the strong repulsions among those <u>ortho</u> substituents, as corroborated in decachlorobiphenyl by the X-ray diffraction data (angle of ~87°);⁷

For the same token, the UV-Visible spectra of diradical PTBT: and dianion PTBT $^{2-}$ (wavelengths and absorptivities) are coincident with those of monoradical PTM[•] and monoanion PTM[•], respectively,¹ which is inconceivable if there were in those species any "biphenyl" absorption left. Furthermore, the UV-Visible absorption curve (two bands) of the equilibrium mixture of PTET:, PTBT²⁻, and PTBT⁻ -where the latter predominates greatly, as shown by ESR (see later)- is exactly the superposition (average) of the PTBT: and PTBT²⁻ curves (one band each) (Figure 2). Such wave-length and absorptivity coincidence, and the absorption additivity demonstrate that the PTBT⁻⁻ molecular moieties are electronically independent and, consequently, no biphenyl odd-electron delocalization takes place.

UV-visible spectra (THF) PTBT:; ----- PTBT²⁻; _____ equilibrium mixture where PTBT⁻⁻/PTBT:**>**8

Figure 2

The ESR spectrum of radical-carbanion PTBT⁻ shows <u>alpha</u> (41.5 MHz) and <u>ortho</u> (15.0) ¹³C <u>spin</u> couplings half as high those for diradical PTBT: (82.5 and 30.0 MHz) (or radical PTM), <u>as if</u> -within the ESR time scalethe <u>spin</u> densities at those carbon nuclei were also half as high. Since lone-electron delocalization is ruled out, those abnormal hyperfine couplings indicate that PTBT⁻ is subjected to a fast "<u>spin</u>-charge exchange". In other words, the molecule of PTBT⁻ possesses a full negative charge localized in one moiety and a full odd electron in the other moiety, as shown by its UV-Visible spectrum. Its negative charge and odd electron exchange positions rapidly, and consequently, the ESR technique "sees" only the average electronic structure; <u>i.e.</u>, half negative charge and half odd electron in each PTBT⁻⁻ moiety, as it has been observed in a related radical of carbon in the spin charge radium ion.

The recorded ESR data cannot be accounted for by assuming a fast <u>inter-molecular</u> electron transfer for, under the conditions of the measurements, mixtures in THF of closely related radical PTN^{\bullet} and carbanion PTN^{\bullet} , display normal ¹³C couplings.

The mixture of carbanions PTBT²⁻ and PTBT⁻⁻, in equilibrium with PTBT:, has been analyzed through acid quenching. Also, the PTBT⁻⁻/PTBT: concentration ratio has been obtained from the relative intensities of the 13 C ESR lines.

References

(1)	Ballester, M.; Riera, J.; Castañer, J.; Badia, C.; Monsó, J.M.
	J. Am. Chem. Soc. 1971, 93, 2215, and references thereof.
(2)	Ballester, M.; de la Fuente, G. Tetrahedron Lett. 1970, 4509.
(3)	Ballester, M.; Riera, J.; Castañer, J.; Casulleras, M. Tetrahedron
	Lett. 1978, 643.
(4)	Jaffé, H.H.; Orchin, M. "Theory and Application of Ultraviolet
	<u>Spectroscopy</u> ", Wiley (1962), p. 273, 397, 404.
(5)	Ballester, M.; Castañer, J.; Riera, J. <u>J. Am. Chem. Soc</u> . 1966, <u>88</u> ,
	957; Ballester, M.; Castañer, J.; Riera, J. <u>An. Quim</u> . 1977, <u>73</u> ,
(6)	Ballester, M.; Castañer, J.; Riera, J.; Pascual, I. J. Am. Chem. Soc
	1984, 106, 3365.
(7)	Pedersen, B.F. Acta Crystallogr. 1975, B31, 2911; Galí, S.;
	Miravitlles, C.; Solans, X.; Font-Altaba, M. Bull. Inst. Cat.
	Hist. Nat. 1979, 43, 51.
	(Received in UK 16 September 1985)